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Seasonal prediction of Korean regional climate from
preceding large-scale climate indices
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Abstract:

On the basis of multivariate linear regression with an adaptive choice of climate indices as predictors, a seasonal forecast
with a lead time of 2 months was applied to Korea on a monthly basis, and leave-one-out cross-validation was applied
to obtain forecasting skill at the 1% significance level. The monthly ACC (anomaly correlation coefficient) skill was
0.42–0.65 for temperature and 0.35–0.63 for precipitation. COD (coefficient of determination) was 18–42% for temperature
and 14–39% for precipitation. The first coupled SLP pattern related to Korean climate is very similar to the correlation
pattern between the preceding climate index and SLP at the target month, indicating that preceding climate indices can be
dynamically linked to Korean climate. For example, the PNA index at a lead time of 5 months prior to October is closely
related to a circulation anomaly with weak negative correlation over the Okhotsk Sea to East Sea and strong positive
correlation over a broad band from Lake Baikal to China. This SLP pattern provides conditions that can dynamically
induce cold advection from northwestern Asia around Lake Baikal toward the Korean Peninsula, resulting in cooling over
Korea. Copyright  2006 Royal Meteorological Society
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INTRODUCTION

Long-range forecasting is attracting increasing interest as
society, industry and government attempt to minimize the
risk, uncertainty and financial volatility associated with
unseasonal weather (Lloyd-Hughes and Saunders, 2002).
There are two basic approaches for long-range climate
prediction: dynamic models and empirical statistical mod-
els. Although it is anticipated that dynamic models may
become superior to empirical methods in future, empirical
forecasts are still able to compete (Anderson et al., 1999).
Empirical statistical models have been developed based
on the relationship between local/regional climate and
preceding surface forcings such as SST, snow cover, and
soil moisture (Colman and Davey, 1999; Lloyd-Hughes
and Saunders, 2002; Blender et al., 2003; Mo, 2003;
Qian and Saunders, 2003; Kim et al., 2004; Moura and
Hastenrath, 2004; Singhrattna et al., 2005), because the
predictability of climate and weather at leads exceeding
10 days is linked to local and/or distant surface forcings
and their feedback on the atmosphere (Palmer and Ander-
son, 1994; Goddard et al., 2001). As shown in previous
studies, the skill of empirical statistical models depends
on the strong relationship between preceding large-scale
predictors and regional-scale predictands. Climate indices
useful as large-scale predictors have been developed to
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express the variability of the atmosphere, land surface,
and ocean at regional and global scales. These climate
indices are widely used for seasonal predictions and are
updated on a monthly basis by the climate diagnostics
center (CDC) and climate prediction center (CPC). In
this study, statistical seasonal prediction methods were
developed and applied to the Korean climate using these
regularly updated climate indices.

DATA AND METHODOLOGY

Data

The data used in this study are the monthly precipi-
tation and temperature from 12 Korean weather stations
for 50 years from 1954 to 2003 (Table I). The observed
monthly mean SLP was obtained from the National
Centers for Environmental Prediction (NCEP) and the
National Center for Atmospheric Research (NCAR)
reanalysis data with a horizontal resolution of 2.5° × 2.5°

latitude-longitude for 50 years from 1954 to 2003. The
observed monthly climate indices were obtained from
the CDC and the CPC for 51 years from 1953 to 2003.
Monthly temperature anomalies for each month were
computed by subtracting the long-term monthly mean
from the detrended time series.

Many climate indices, which are updated monthly, are
useful for seasonal prediction (Table II). For example,
the arctic oscillation (AO), defined as the first leading
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Table I. List of Korean surface observation stations used in this
study.

Station
no.

Station Latitude
(°N)

Longitude
(°E)

105 Kangnung 37.75 128.90
108 Seoul 37.57 126.97
112 Inchon 37.47 126.63
135 Chupungryoung 36.22 128.00
138 Pohang 36.03 129.38
143 Daegu 35.88 128.62
146 Jeonju 35.82 127.15
152 Ulsan 35.55 129.32
156 Kwangju 35.17 126.90
159 Pusan 35.10 129.03
165 Mokpo 34.82 126.38
168 Yeosu 34.73 127.75

mode from the EOF analysis of monthly mean height
anomalies at 1000-hPa (Thompson and Wallace, 2000), is
an important index for the prediction of regional climate
in the middle latitude of the northern hemisphere. The
Equatorial SOI (ESO), the Pacific Decadal Oscillation
Index (PDO) and the Southern Oscillation Index (SOI)
are also widely used for seasonal predictions in the Asian
Pacific region (Rasmusson and Carpenter, 1982; Zhang
et al., 1997).

On the other hand, temperature (precipitation) just
before the forecast time should be a good predictor for
temperature (precipitation). In order to test this, we have
calculated the auto-lag correlation for each target month
(not shown). The result shows that there is almost no
signal for precipitation while there are a few signals over

a lead month of 1 for temperature; for example, August
with a lead month of 3, and September with a lead month
of 4 and 5. However, we did not consider this variable
for simplicity in this study.

Development of a multivariate linear regression model

The development of seasonal prediction models based
on a multiple linear regression is very simple and
popular for many regions. However, the process is not
as simple as adding potential predictors to the regression
model until an apparently good relationship is achieved,
because an overfit regression can occur (Wilks, 1995).
In this study, to avoid the possibility of overfitting
the regression, we limited the number of predictors
to five (about 25% of potential predictors). We also
have considered multicollinearity in order to avoid the
inflation of total variance explained by models. The firm
separation of training and forecast periods is fundamental
for true skill assessment. This distinction ensures that
hindcasts are always applied to independent data, thus
making the model skill the true forecast skill (Lloyd-
Hughes and Saunders, 2002). In this study, we used
more intensive criteria for verification, as explained in
the sections on Cross-validation of the Model and Skill
Scores of the Prediction Models.

Figure 1 shows the schematic diagram for the selection
procedure for the seasonal prediction model. We devel-
oped forecasting models separately after separating the
data into two groups. In Group I, the total period was
divided into a training period of the initial 30 years and a
verification period of the later 20 years, while the training
period in Group II was the later 30 years and verifica-
tion period the initial 20 years. As the first step, for each

Table II. List of potential predictors updated on a monthly basis from the Climate Diagnostic Center (CDC) and Climate Prediction
Center (CPC), NOAA.

Abbreviation Full name Source

AMO Atlantic Multidecadal Oscillation (Enfield et al., 2001) CDCa

AO Arctic Oscillation (Thompson and Wallace, 2000) CPCb

ESL Equatorial Eastern Pacific SLP CPC
ESO Equatorial SOI CPC
GML Global Mean Land Ocean Temperature Index (Hansen et al., 1999) CDC
ISL Indonesia SLP CPC
MEI Multivariate ENSO Index (Rasmusson and Carpenter, 1982) CDC
NAO North Atlantic Oscillation (Barnston and Livezey, 1987) CPC
NOI Northern Oscillation Index (Schwing et al., 2002) CDC
ONI Oceanic Niño Index CPC
PDO Pacific Decadal Oscillation Index (Zhang et al., 1997) CDC
PNA Pacific/North American Pattern (Barnston and Livezey, 1987) CPC
SOI Southern Oscillation Index (Rasmusson and Carpenter, 1982) CPC
SWM SW Monsoon Region Rainfall (Brasseur, 2001) CDC
TNA Tropical Northern Atlantic Index (Enfield et al., 1999) CDC
TSA Tropical Southern Atlantic Index (Enfield et al., 1999) CDC
WHW Western Hemisphere Warm Pool (Wang and Enfield, 2001) CDC
WPO West Pacific Oscillation (Barnston and Livezey, 1987) CPC

a Climate diagnostics center.
b Climate prediction center.
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Figure 1. Schematic diagram for the procedure of predictor selection
to use in seasonal prediction. Subscripts i, j, and L represent predictor,

target month, and lead month, respectively

calendar month and predictand X, the model fitting in
Group I was performed separately using potential predic-
tors of the preceding month from 2 to 12 months during
the training period from 1954 to 1983 and then we per-
formed significance tests for the verification period from
1984 to 2003. In each step, a 1% significance level was
applied to go to the next step based on a two-tailed t-
test for correlation coefficients between observed values
and predicted (or fitted) values for each group. As the
second step, we fit the Group I model during the train-
ing period from 1974 to 2003 using the same predictors
from models obtained from the Group I significance test,
and then performed significance tests for the verification
period from 1954 to 1973. Thus, regression coefficients
of each model in the second step are different from those

in the first step. It should be noted that the second step is
just done in order to check the predictability of Group I
models during the period of Group II. If the criterion was
not satisfied, we changed the predictors or lead months
until the criterion was satisfied. Thus, all combinations
of predictors (two to five predictors) and lead months
(2–12 months) were considered for each multiple lin-
ear regression. It should be noted that we did not use
predictors at a 1-month lead because all of the poten-
tial predictors are updated in the middle of the month
prior to the target month. Ultimately, we selected the first
five models with the best correlation skill from Group I.
This procedure was repeated to develop five models for
Group II.

As an example, the results of October temperature and
precipitation over Korea are presented and discussed in
this study. Prediction skill in October is in the middle
range among the 12 target months, as shown in Figures 2
and 3. Tables III and IV show predictors of ten models
for October temperature and precipitation, respectively.
The predictors of the Group I models are different from
those of the Group II models, because we selected the
best five models that have the highest correlation between
prediction and observation in the verification period, not
the training period, from each group. So, correlation
skill during the verification period was higher than that
during the training period as shown in Figures 2 and
3. In fact, in selecting prediction models on the basis
of correlation skill in the verification period, predictors
from each group were very similar except for one or two
predictors. Although the five best Group I models did
not rank among the five best Group II models, they met
the requirements of the Group II verification test period.
Moreover, the ensemble mean prediction from different
predictors should be meaningful in detecting a signal for
forecasting.

Figure 2(a) and (b) shows the ensemble mean temper-
ature in October of the five models obtained from the
two groups. Correlation coefficients between the ensem-
ble mean and observations in Group I are 0.71 for the
training period (1954 to 1983) and 0.85 for the verifi-
cation period (1984 to 2003). In Group II, values were

Table III. List of preceding predictors used in ten seasonal prediction models for October temperature in Korea. Numbers in
parenthesis represent leading months prior to October.

Group Model
no.

Predictors (lag)

I 1 GML(11) PNA(5) SWM(8) TNA(5) WHW(10)
2 AO(9) ESO(3) GML(11) NOI(8) WHW(6)
3 AMO(6) GML(11) PNA(5) SWM(8) WHW(10)
4 GML(11) PNA(5) SWM(8) TNA(4) WHW(10)
5 AO(9) ESO(3) NOI(8) TNA(9) WHW(6)

II 1 AO(3) NOI(8) PDO(2) PNA(10) WHW(6)
2 AMO(5) GML(11) MEI(8) PNA(5) SWM(8)
3 ISL(11) NOI(8) PNA(10) SOI(3) WHW(10)
4 AMO(5) GML(11) PNA(5) SOI(9) SWM(8)
5 AO(12) ISL(11) NOI(2) SWM(8) WHW(10)
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Table IV. List of preceding predictors used in ten seasonal prediction models for October precipitation in Korea. Numbers in
parenthesis represent leading months prior to October.

Group Model
no.

Predictors(lag)

I 1 AO(4) NOI (2) SOI (5) SWM (6) TNA (11)
2 AO(4) GML (3) NOI (10) PDO (8) SWM (4)
3 AO(4) GML (2) NOI (10) PDO (8) SWM (4)
4 AO(4) GML (6) NOI (10) PDO (8) SWM (4)
5 ISL(7) NAO(5) PDO(9) TNA(9) TSA(7)

II 1 GML(11) ISL(7) NAO(5) PNA(9) SWM(7)
2 GML(11) ISL(7) NAO(5) PDO(8) SWM(7)
3 ESL(7) NOI(6) PDO(6) PNA(6) TNA(9)
4 ISL(7) NAO(5) PDO(8) SWM(12) TSA(7)
5 ESL(12) NOI(11) PDO(8) SWM(12) WPO(2)
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Figure 2. Time series of the observed (solid line) and ensemble mean of the five predicted (dashed line) October temperatures in Korea for
Groups I (a) and II (b)

0.72 for the training period (1974 to 2003) and 0.90 for
the verification period (1954 to 1973). Although several
peaks in observation are underestimated in the statistical
models, model prediction closely follows the inter-annual
variations of the observations. The correlation skill for
October precipitation was lower than that for October
temperature: 0.66 for the Group I training period and 0.86

for Group II training period versus 0.85 for the Group I
verification period and 0.70 for the Group II verification
period, respectively (Figure 3).

Cross-validation of the model

We performed another verification procedure using
ten statistical models selected from Groups I and II.
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Figure 3. Time series of the observed (solid line) and ensemble mean of the five predicted (dashed line) October precipitations in Korea for
Groups I (a) and II (b)

Cross-validation is very often carried out using devel-
opmental data sets of size n-1, and verification data sets
contain the remaining single observation of the predictand
(Wilks, 1995). In this case, there are clearly n distinct par-
titions of the data and n similar forecast equations. Thus,
we can use all n observation samples of the predictand to
estimate the prediction skill as explained in Figures 4 and
5. For small samples, the leave-one-out cross-validation
(Michaelsen, 1987) is appropriate and has been applied
in other statistical forecast models (Barnston, 1994). The
relative performance of the forecast is measured by two
skill scores, the anomaly correlation coefficient (ACC)
and coefficient of determination (COD) (Wilks, 1995).

ACC = Cov(X,Y)/(SXSY) (1)

COD = SSR/SST (2)

where Cov(X,Y), SX, and SY indicate covariance between
predictor X and predictand Y, and the standard devia-
tions of X and Y, respectively. SST and SSR represent
the total sum of squares and regression sum of squares,
respectively. Qualitatively, coefficient of determination

(COD) can be interpreted as the proportion of the pre-
dictand variation that is ‘accounted for’ by the regression
model (Wilks, 1995).

RESULTS

Coupled modes between observed SLP and regional
climate over Korea

In this section, we investigated how preceding pre-
dictors are related to atmospheric circulation around the
Korean Peninsula in the target month of October. As an
example, we chose a PNA (5) predictor for temperature
and AO (4) for precipitation (Tables III and IV), because
they are two of the most frequently appearing predictors
in Group I.

Figure 4 shows the correlation pattern between PNA
(5) and the observed October SLP. Weak negative cor-
relations are seen over the Okhotsk Sea to East Sea,
while strong positive correlations with significance levels
between 1 and 5% are found only over the broad band
from Lake Baikal to China. This indicates that positive
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Figure 4. Correlation pattern between observed PNA index at lead month of five and observed SLP in October. The significance levels are shown
with different shading on the right side
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Figure 5. First leading SVD mode of observed SLP (a) and Korea temperature (b) in October. This mode explains 93.3% of total covariance.
(c) Associated time coefficients of observed SLP (solid line) and Korea temperature (dashed line)

PNA (5) induces an east–west SLP anomaly in Octo-
ber around the Korean Peninsula, and the SLP pattern
has conditions favorable to cooling the Korean Peninsula
through cold advection.

Figure 5 shows the first singular value decomposition
(SVD) mode between the observed SLP and October
temperature over Korea. The correlation between the
expansion coefficients is 0.58 (Figure 5(c)) and this mode
accounts for 93.3% of total covariance. The main signals
in the SLP pattern appear over the northwestern Pacific,
Siberia, and the Yangtze River, corresponding to the

position of a typical air mass around the Korean Peninsula
in October. There is an east–west SLP pattern around the
Korean Peninsula and October temperature has the same
negative sign over the entire region of Korea. This pattern
represents a dynamic link that is physically reasonable,
because Korean temperature decreases when anomalous
anticyclonic circulation over East Asia intensifies, while
cyclonic circulation over the western north Pacific inten-
sifies. The SLP pattern of Figure 5(a) is very similar to
the correlation pattern in Figure 4, especially in the north-
western Pacific with a negative correlation center around
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Okhotsk Sea and a strong positive correlation center in
a broad band from Lake Baikal to China, indicating that
PNA (5) may induce a circulation anomaly that ensures a
dynamic link between the observed SLP and temperature.

Figure 6 shows the correlation pattern between AO
(4) and the observed SLP in October. Strong positive
correlation over a 5% significance level appears in the
region from Siberia to China while strong negative
correlation appears around the Kamchatka Peninsula.
This correlation pattern is very similar to the first coupled
mode between the observed SLP and Korean precipitation
as shown in Figure 7(a). In fact, the western wing of

the Aleutian Low, one of the important pressure systems
during the cold season, including October, is extended to
the Kamchatka Peninsula, and its variability is also large
over the Kamchatka Peninsula (not shown). The Siberian
High also gradually takes its place over the region of
Lake Baikal to China before winter. The strengthening
of the Siberian High, especially over the northern Korean
Peninsula, may induce cold advection and associated
large latent heat flux over the East Sea between Korea
and Japan. This pattern provides conditions that supply
moisture to the Korean Peninsula. We can confirm this
dynamic link from Figure 7(b) which shows all positive
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Figure 8. Forecast skill (a) and standard deviation (b) of ten models shown in Table III for Korean temperature. Solid and dashed lines represent
ACC and COD, respectively. The heavy solid line represents the ensemble mean of the ten models. The total height of error bar includes

approximately 95% when a Gaussian distribution is roughly provided

signals in the precipitation pattern over Korea. Temporal
correlation between the two time series also shows a close
connection, with a correlation coefficient of 0.51.

We have compared correlation pattern by each index
with the leading SVD modes. The results show that
correlation pattern by a common index among indices
of ten models is very similar to that of the SVD pattern
while in other indices it is partially matched with each
other.

Skill score of the prediction models

In this section, the monthly forecasting skill, estimated
by leave-one-out cross-validation in each segment, is
investigated at a 2-month lead time using ACC and COD.
It should be noted that prediction models used in this
section have already passed through the first step of
validation as explained above. Thus, the leave-one-out
cross-validation may provide a strong criterion, especially
in the short-total period of this study.

Figure 8 shows the forecast skill and standard devi-
ation of ten models for Korean temperature (Table III).
Monthly ACC (heavy solid line) ranged from 0.42 in
March to 0.65 in May, and monthly COD was 18–42%
of total variation of temperature (Table V). During the
pre-monsoon season, May has one of the highest skills.
The start of the rainy period, June, has low skill because
of the uncertainty about the exact starting time of the
rainy period; while during the rainy period, July has the

highest skill. On the other hand, the cold season (Novem-
ber to March) has lower skill, about 0.42 to 0.55 ACC,
than the warm season (Table V), implying that statisti-
cal models do not fully explain the large variability of
temperature during the cold season.

Figure 9 shows the forecast skill and standard devia-
tion of ten models for Korean precipitation (Table IV).

Table V. The ensemble mean skill of ten prediction models
for anomaly correlation coefficient (ACC) and Coefficient of
determination (COD). The critical ACCs at the 5 and 1%
significance level are 0.28 and 0.36, respectively, based on a

two-tailed t-test.

Month Temperature Precipitation

ACC COD ACC COD

January 0.54 0.29 0.45 0.20
February 0.49 0.24 0.37 0.14
March 0.42 0.18 0.44 0.20
April 0.56 0.32 0.58 0.34
May 0.65 0.42 0.52 0.27
June 0.53 0.28 0.35 0.12
July 0.55 0.31 0.48 0.23
August 0.56 0.32 0.63 0.39
September 0.56 0.31 0.60 0.36
October 0.55 0.31 0.51 0.26
November 0.55 0.31 0.48 0.23
December 0.48 0.23 0.51 0.26
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Figure 9. Forecast skill (a) and standard deviation (b) of ten models shown in Table III for Korean precipitation. Solid lines represent ACC
and dashed lines represent COD. The heavy solid line represents the ensemble mean of ten models. The total height of error bar includes
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Seasonal variation of ACC and COD resembles that of
temperature in most months, as explained in Figure 8,
although skill peaks in April and August. The overall cor-
relation skill of precipitation is lower (within ±0.1) than
that of temperature, especially during the rainy season
(Table V).

CONCLUSION

In this study, we developed a seasonal forecasting model
based on the multivariate linear regression with an
adaptive choice of predictors using regularly updated
climate indices. The available sets of the preceding
predictors from 2 to 12 months are the monthly climate
indices, which are updated monthly by the CDC and the
CPC. The leave-one-out cross-validation was applied to
obtain forecasting skill at a 1% significance level. The
skill of forecast models and their significance levels are
also discussed using ACC and the COD on a monthly
basis.

The monthly ACC skill ranged between 0.42 and 0.65
for temperature and between 0.37 and 0.63 for precipi-
tation. The COD ranged between 18 and 42% for tem-
perature and between 14 and 39% for precipitation. The
ACC skills are significant at the 1% significance level.
The monthly ACC skill showed seasonal dependency, i.e.
high skill during the warm season from April to Septem-
ber, except for June, and low skill during the cold season

from October to March. June has a low ACC of 0.53 and
COD of 28% because of the variability in the starting
time of the monsoon rainy season. However, after the
end of the rainy season, the highest ACC skill of 0.63
and COD of 39% occurred in August for precipitation.
March temperature has the lowest ACC skill of 0.42 and
COD of 18%, and February precipitation has the lowest
ACC skill of 0.37 and COD of 14%. These results are
comparable with those of Kang and Baek (1993) and Kim
(2003), obtained from the statistical model based on an
empirical lagged relationship between the climate vari-
ables and the pre-season large-scale predictors, i.e. sea
level pressure, sea surface temperature, and geopotential
height. However, it is relatively easy to interpret physi-
cal meaning based on climate indices and extensible to
long-lead time in this method.

The first coupled SLP pattern related to Korean climate
is very similar to the correlation pattern between preced-
ing climate index and SLP in the target month, indicating
that preceding climate indices can be dynamically linked
to Korean climate. For example, the PNA index at a 5-
month lead time before October is closely related to a
circulation anomaly with weak negative correlation over
the Okhotsk Sea and strong positive correlation over a
broad band from Lake Baikal to China. This SLP pat-
tern provides conditions that can dynamically induce cold
advection from northwestern Asia around Lake Baikal
toward the Korean Peninsula, resulting in cooling over
Korea.
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Despite considerable recent progress, our understand-
ing of climate forcings and how they feedback to influ-
ence climate variability and predictability at different
leads and over different predictand timescales remains far
from complete (Qian and Saunders, 2003). The physical
mechanism of how large-scale climate indices in pre-
ceding months induce circulation anomaly at the target
month remains an open question requiring further investi-
gation by numerical modeling. Although it is possible that
statistical models will continue to be competitive with or
even superior to numerical models for the seasonal pre-
diction problem, it is difficult to gain a complete physical
understanding of the climate system through statistical
models, indicating that the development of increasingly
realistic numerical models may increase understanding of
physical processes.
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